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NOTES AND DISCUSSIONS

Precession of Kepler’s orbit
H. X. Jiangand J. Y. Lin

Department of Physics, Syracuse University, Syracuse, New York 13210
(Received 14 June 1984; accepted for publication 16 July 1984)

The motion of a point-mass object of mass m into and out
of a system S consisting of a large numiber of point particles
uniformly distributed inside a sphere of radius R, under the
force of gravity, is investigated in this article. We found
that the path of the object, if allowed to penetrate into the
system without collision, is no longer a stationary Kepler’s
orbit. The major axis of the orbit is found to be precessing
about an axis passing through the center of the system and
perpendicular to the plane of motion of the object. Under
certain conditions, the object will return back to its initial
location after a definite number of cycles of revolution. A
star moving into and out of a galaxy would be a practical
example of our analysis.

We start our analysis by using a polar coordinate system
with its origin at the center of the system of mass M, m <M.
Only the weak gravitational field is considered and the rela-
tivistic effect has been neglected. This means

GM /Rc*«1, (1)
where c is the speed of light in vacuum and G the gravita-
tional constant. Using the law of universal gravitation, the

force F acting on the object, called object P, and its poten-
tial energy ¥ can be written as

—kr/R3? r<R,

F= { —kr/P, r>R, 2
krP/2R* — 3k /2R, r<R

V_{—k/r, r>R, ()

where k =GMm and r is the distance between the origin
and the object. For the case of >R, the equation of the
orbit has the form'

r~t=(mk/1*)[1+e€cosl@—6)], (4)
where
€= (1 + 2E1*/mk?*)"?, (3)

E is the total energy, / the total angular momentum, and 4
the angle between the position vector r and the polar axis
(0038
@ in Eq. (4) can be determined by the initial conditions.
Initially, we let 6§ = 0, and (4) reduces to
r-'=(mk/I*(14€cos ). (6)

For the case of 7 < R, we have!

6 =eo—f(2mE/12—2mV/12_u2)ﬁ1/2du

2mE ( 3k ) mk 2] -1z
=6, — 1 — —Uu du,
0 ﬂ 2 \ T 2RE) T TR

7

where u = r~!, and 6, is a constant of integration.
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With the substitution of x = #?, (7) simplifies to

6=06,—}sin~![(2x — B)/(B? +44)"], (8)
where

A= —mk/I*R3, )

B =(2mE /131 + 3k /2RE), (10)
and

r 2=B/2+ }(B?+44)"*sin[2(6, — 0)]. (11)

Equation (11) represents the orbit equation of the particle
inside S. The 6, can be determined by the initial condi-
tions.

As shown in Fig. 1, at the initial point of entry of P into
S, r=R, 6 = 6,. We get, from Eqs. (6} and (11},

0, =cos™'[e™I*/mkR — 1)], (12)

R™*=B/2+}B*+44)"*sin[2(6, — 6,)], (13)
or

6,=6,+sin"'[(2/R*~B)/(B* + 44)"*]. (14)
The minimum value of 7, r,,,;,, , can be determined by letting
sin[2(8, — €)] = 1 in Eq. (11). We have

Foin = [2/(B + VB +44)]"" (15)
and the value of 8 at r = r,,,;,, is given by the equation

(7 in) = 6, — 7/4. (16)
At the point of exit of P from S, we have r =R, 6 =6,.
Using Eq. (13), we must have

sin[2(6, — 6,)] =sin[2(6, — 6,)]. (17)

P(r.8)

Fig. 1. Orbit of particle Paround a system S consisting of a large number
of point particles uniformly distributed within a sphere of radius R.
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The nontrivial solution of (17) is
2(6p — 61) =7 — 2(6, — 65)
or (18)
0,=20,—06,—u/2.
Notice that if all the mass of S were concentrated at the
origin, the orbit of P would be a Kepler’s orbit and
6, = — 6,. From (18), we see that in general, ,# — 0,.
Because the total energy and angular momentum of the
particle P are conserved, the orbit of the particle after it
leaves S will again be determined by Eq. (4) and 6 ; will no
longer be zero if 8,%# — 6,. Replacing 6 by 6;, we can
rewrite Eq. (4) as

yo1 =’;’—2k[1 + € cos(@ — 63)]. (19)
At the point of exit of the particle from the system S, as
shown in Figs. 1 and 2, we have 8 = 6, and r = R. Equa-
tion (19) now becomes

R = (mk /1?)[1 + € cos(f, — 6,)]
or

0; =6, —cos '[e"'(I*/mkR — 1)]=6,+6,. (20)
From Fig. 1, we see that if 6, = — 6,, 8, = 0. This means
that we must use a plus sign in Eq. (20). We then have, using
Eq. (18),

0, =0,4+6,=20,—u/2. (21)
The 8, in general is different from zero. So the orbit of the
particle does have a precession.

The Kepler’s orbit C | of Eq. (6} differs from our derived
orbit of Eq. (19) as shown in Fig. 1. The angle between the
major axis of C, and that of C | is 6;, a nonzero value. The
6, depends on the values of m, M, E, [, and R. As shown in
Fig. 2, for E <0, if we use OO " as a new polar axis and
repeat the above calculations, we can get the orbit of the

second cycle. The orbit of the nth cycle can then be ex-
pressed as

r; = (mk/13[1 +ecos(@ —nbs)], r>R, (22)
=7, 2=B/2+ }(B*+44)"
xsin{2[8, — (6 — n6,)1}, r<R], (23)
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P&

Fig. 2. Precession of the orbit of particle P for E <0.

wheren=0,1,2....

Equations (22) and (23) give us the precession of Kepler’s
orbit. The orbit of the particle will be closed after n cycles if
condition n6, = 27 is satisfied. Using Eqgs. (12), (14), and
(21), the condition n8, = 27 can be expressed in the follow-
ing form:

200s—1[i( rr__ 1)] +sin"'(————2/R2_B )
¢ \mkR (B2 + 447
- (% + %)27. 24)

The orbit of the particle P, for the case of E < 0, is shown in
Fig. 2.

'H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA,
1965), pp. 73-78.
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